Information Flow Inference for ML

Vincent Simonet
INRIA Rocquencourt - Projet Cristal

MIMOSA

September 27, 2001

Information flow

$$
\begin{gathered}
\operatorname{account}^{H} \times \text { order }^{L} \rightarrow \operatorname{bank}^{H} \times \text { vendor }^{L} \\
(\forall \alpha \beta \gamma \delta)[\alpha \sqcup \beta \leq \gamma, \beta \leq \delta] \operatorname{account}^{\alpha} \times \operatorname{order}^{\beta} \rightarrow \operatorname{bank}^{\gamma} \times \text { vendor }^{\delta}
\end{gathered}
$$

Non-interference

Existing systems

Dennis Volpano et Geoffrey Smith (1997)
Type system on a simple imperative langage. Restricted to the first order and a finite number of global references.

Nevin Heintze et Jon G. Riecke SLam Calculus (1997) λ-calculus with references and threads. The typing of mutable cells is not fine enough. No security property is stated.

Andrew C. Myers JFlow (1999)
Information flow analysis for Java. This sytem is complex and not proven.
Steve Zdancewic et Andrew C. Myers (2001)
Analysis on a low-level language with linear continuations.

The ML language

Call-by-value λ-calculus with let-polymorphism

$$
\begin{array}{rrrl}
& x & k & \text { fun } x \rightarrow e \\
e_{1} e_{2} & & \text { let } x=v \text { in } e & \text { bind } x=e_{1} \text { in } e_{2}
\end{array}
$$

with references

$$
\text { ref } e
$$

$$
e_{1}:=e_{2}
$$

$$
!e
$$

and exceptions
عe raise e
e_{1} handle $\varepsilon x \succ e_{2}$
e_{1} handle $x \succ e_{2}$

The ML language v-normal forms

$$
\begin{aligned}
v & ::=x|k| \text { fun } x \rightarrow e \mid \varepsilon v \\
e & ::=v v \mid \text { ref } v|v:=v|!v \mid \text { raise } v \mid \text { let } x=v \text { in } e \mid E[v] \\
E & ::=\text { bind } x=[] \text { in } e \mid[] \text { handle } \varepsilon x \succ e \mid[] \text { handle } x \succ e
\end{aligned}
$$

Any source expression may be rewritten into a v-normal form provided an evaluation strategy is fixed :

$$
e_{1} e_{2} \Rightarrow \begin{cases}\text { bind } x_{1}=e_{1} \text { in }\left(\text { bind } x_{2}=e_{2} \text { in } x_{1} x_{2}\right) & \text { left to right eval. } \\ \text { bind } x_{2}=e_{2} \text { in }\left(\text { bind } x_{1}=e_{1} \text { in } x_{1} x_{2}\right) & \text { right to left eval. }\end{cases}
$$

Information levels

An information level is associated to each piece of data. Information levels (which belong to a lattice \mathcal{L}) may represent different properties: security, integrity...

In the rest of the talk, we fix $\mathcal{L}=\{L \leq H\}$.

Direct and indirect flow

Direct flow

$$
\begin{gathered}
x:=\text { not } y \\
x:=(\text { if } y \text { then false else true })
\end{gathered}
$$

Indirect flow

$$
\begin{gathered}
\text { if } y \text { then } x:=\text { false else } x:=\text { true } \\
x:=\text { true; if } y \text { then } x:=\text { false else () } \\
x:=\text { true; (if } y \text { then raise } A \text { else }()) \text { handle }{ }_{-} \succ x:=\text { false }
\end{gathered}
$$

A level $p c$ is associated to each point of the program. It tells how much information the expression may acquire by gaining control; it is a lower bound on the level of the expression's effects.

Type system

Semi-syntactic approach

(examples in the case of ML)

Logical system

Ground types
e.g. int, int \rightarrow int...

Polytypes
e.g. $\{t \rightarrow t \mid t$ type brut $\}$

Syntactic system

Type expressions
e.g. int, $\alpha, \alpha \rightarrow \alpha \ldots$

Schemes
e.g. $\forall \alpha . \alpha \rightarrow \alpha$

We reason with the logical system. The syntactic system is interpreted into the logical one.

Type system
 Type algebra

The information levels $\ell, p c$ belong to the lattice \mathcal{L}.
Exceptions are described by rows of alternatives r :

$$
\begin{aligned}
a & ::=\text { Abs } \mid \text { Pre } p c \\
r & ::=\{\varepsilon \mapsto a\}_{\varepsilon \in \mathcal{E}}
\end{aligned}
$$

Types are annotated with levels and rows:

$$
t::=\operatorname{int}^{\ell} \mid \text { unit }\left|(t \xrightarrow{p c} t)^{\ell}\right| t \operatorname{ref}^{\ell} \mid r \operatorname{exn}^{\ell}
$$

Type system
 Judgements

The type system involves two kinds of judgements:
Judgements on values

$$
\Gamma \vdash v: t
$$

Judgements on expressions

$$
p c, \Gamma \vdash e: t[r]
$$

Type system
 Constraints

Subtyping constraints $t_{1} \leq t_{2}$
The subtyping relation extends the order on information levels. E.g.:

$$
\text { int }^{\ell_{1}} \leq \text { int }^{\ell_{2}} \Leftrightarrow \ell_{1} \leq \ell_{2} \quad \text { Abs } \leq \operatorname{Pre} p c
$$

Guards $\quad \ell \triangleleft t$
Guards allow to mark a type with an information level:

$$
p c \triangleleft \operatorname{int}^{\ell} \Leftrightarrow p c \leq \ell \quad p c \triangleleft t \operatorname{ref}^{\ell} \Leftrightarrow p c \leq \ell
$$

Conditional constraints $p c \leq_{\text {Pre }} a$
$p c \leq_{\text {Pre }} a$ is a shortcut for $a \neq \mathrm{Abs} \Rightarrow \operatorname{Pre} p c \leq a$.

Type system
 Subtyping and polymorphism

Subtyping and polymorphism act in orthogonal ways:

Subtyping Allows increasing the level of any piece of data (e.g. considering a public piece of data as secret):

Polymorphism Required for applying the same function to inputs with different levels:

$$
\text { let } \operatorname{succ}=\text { fun } x \rightarrow(x+1)
$$

Type system
 References

$$
\frac{\stackrel{\text { REF }}{\stackrel{\text { Rev }}{ }+t: t \quad p c \triangleleft t}}{p c, \Gamma \vdash \operatorname{ref} v: t \operatorname{ref}^{\ell}[r]}
$$

Deref
$\frac{\Gamma \vdash v: t^{\prime} \text { ref }^{\ell} \quad t^{\prime} \leq t \quad \ell \triangleleft t}{p c, \Gamma \vdash!e: t[r]}$

Assign

$$
\frac{\Gamma \vdash e_{1}: t \mathrm{ref}^{\ell} \quad \Gamma \vdash e_{2}: t \quad \ell \triangleleft t \quad p c \triangleleft t}{p c, \Gamma \vdash e_{1}:=e_{2}: \text { unit }[r]}
$$

The content of a reference must have a level greater than (or equal to)

- the $p c$ of the point where the reference is created,
- the $p c$ of each point where its content is likely to be modified.

Type system

Exceptions

RAISE
$\frac{\Gamma \vdash v: \operatorname{typexn}(\varepsilon)}{p c, \Gamma \vdash \operatorname{raise}(\varepsilon v): *[\varepsilon: \text { Pre } p c ; \partial \mathrm{Abs}]}$

Handle

$$
p c, \Gamma \vdash e_{1}: t\left[\varepsilon: \text { Pre } p c^{\prime} ; r_{1}\right]
$$

$$
\frac{p c \sqcup p c^{\prime}, \Gamma[x \mapsto \operatorname{typexn}(\varepsilon)] \vdash e_{2}: t\left[\varepsilon: a_{2} ; r_{2}\right] \quad p c^{\prime} \triangleleft t}{p c, \Gamma \vdash e_{1} \text { handle } \varepsilon x \succ e_{2}: t\left[\varepsilon: a_{2} ; r_{1} \sqcup r_{2}\right]}
$$

Non-interference

Let us consider an expression e of type int^{L} with a "hole" x marked H :

$$
(x \mapsto t) \vdash e: \operatorname{int}^{L} \quad H \triangleleft t
$$

Non-interference

$$
\text { If }\left\{\begin{array} { l }
{ \vdash v _ { 1 } : t } \\
{ \vdash v _ { 2 } : t }
\end{array} \text { and } \left\{\begin{array}{l}
e\left[x \Leftarrow v_{1}\right] \rightarrow^{*} v_{1}^{\prime} \\
e\left[x \Leftarrow v_{2}\right] \rightarrow^{*} v_{2}^{\prime}
\end{array} \text { then } v_{1}^{\prime}=v_{2}^{\prime}\right.\right.
$$

The result of e 's evaluation does not depend on the input value inserted in the hole.

Non-interference proof

1. Define a particular extension of the language allowing to reason about the common points and the differences of two programs.
2. Prove that the type system for the extended language satisfies subject reduction.
3. Show that non-interference for the initial language is a consequence of subject reduction.

Non-interference proof
 Shared calculus

The shared calculus allows to reason about two expressions and proving that they share some sub-terms throughout reduction.

Syntax

$$
v::=\ldots|\langle v \mid v\rangle \quad e::=\ldots|\langle e \mid e\rangle
$$

We restrict our attention to expressions where $\langle\cdot \mid \cdot\rangle$ are not nested.

Non-interference proof

Encoding

A shared expression encodes two expressions of the source calculus:

Two projections $\lfloor\cdot\rfloor_{1}$ and $\lfloor\cdot\rfloor_{2}$ allow to recover original expressions:

Non-interference proof
 Reducing the shared calculus

Reduction rules for the shared calculus are derived from the source calculus ones. When $\langle\cdot \mid \cdot\rangle$ constructs block reduction, they have to be lifted.

Example:

$$
\begin{align*}
(\text { fun } x \rightarrow e) v & \rightarrow e[x \Leftarrow v] \\
\left\langle v_{1} \mid v_{2}\right\rangle v & \rightarrow\left\langle v_{1}\lfloor v\rfloor_{1} \mid v_{2}\lfloor v\rfloor_{2}\right\rangle
\end{align*}
$$

(lift-app)

Non-interference proof
 Simulation

Soundness

$$
\text { If } \quad \text { then } \begin{aligned}
& \left\{\begin{array}{l}
\lfloor e\rfloor_{1} \rightarrow=\left\lfloor e^{\prime}\right\rfloor_{1} \\
\lfloor e\rfloor_{2} \rightarrow=\left\lfloor e^{\prime}\right\rfloor_{2}
\end{array}\right. \\
& \text { (shared calculus) } \\
& \text { (source calculus) }
\end{aligned}
$$

Completeness

$$
\text { If } \begin{aligned}
& \left\{\begin{array}{l}
e_{1} \rightarrow^{*} v_{1} \\
e_{2} \rightarrow^{*} v_{2}
\end{array}\right. \\
& \text { (source calculus) }
\end{aligned} \text { then } \llbracket e_{1}\left|e_{2} \rrbracket \rightarrow^{*} \llbracket v_{1}\right| v_{2} \rrbracket
$$

Non-interference proof

Typing $\langle\ldots \mid \ldots\rangle$

A value whose type is int^{H} may be an integer k or a bracket $\left\langle k_{1} \mid k_{2}\right\rangle$.
A value whose type is int ${ }^{L}$ must be a simple integer k.

Non-interference proof

Subject reduction and non-interference

Let us consider $(x \mapsto t) \vdash e:$ int L with $H \triangleleft t$.

Subject-reduction

$$
\text { If } \vdash e^{\prime}: \operatorname{int}^{L} \text { and } \quad e^{\prime} \rightarrow^{*} v^{\prime} \quad \text { then } \vdash v^{\prime}: \text { int }^{L}
$$

$$
e^{\prime}=e[x \Leftarrow v] \quad \begin{gathered}
\uparrow \\
\mid
\end{gathered} \quad \begin{gathered}
\mid \\
=
\end{gathered}
$$

Non-interference (shared calculus)

$$
\text { If } \vdash v: t \quad \text { and } \quad e[x \Leftarrow v] \rightarrow^{*} v^{\prime} \quad \text { then }\left\lfloor v^{\prime}\right\rfloor_{1}=\left\lfloor v^{\prime}\right\rfloor_{2}
$$

Non-interference proof

Non-interference

Let us consider $(x \mapsto t) \vdash e:$ int L with $H \triangleleft t$.
Non-interference (shared calculus)

$$
\text { If } \vdash v: t \quad \text { and } \quad e[x \Leftarrow v] \rightarrow^{*} v^{\prime} \quad \text { then }\left\lfloor v^{\prime}\right\rfloor_{1}=\left\lfloor v^{\prime}\right\rfloor_{2}
$$

$$
v=\left\langle v_{1} \mid v_{2}\right\rangle \quad v^{\prime}=\llbracket v_{1} \mid v_{2} \rrbracket
$$

Non-interference (source calculus)

$$
\text { If }\left\{\begin{array} { l }
{ \vdash v _ { 1 } : t } \\
{ \vdash v _ { 2 } : t }
\end{array} \text { and } \left\{\begin{array}{l}
e\left[x \Leftarrow v_{1}\right] \rightarrow^{*} v_{1}^{\prime} \\
e\left[x \Leftarrow v_{2}\right] \rightarrow^{*} v_{2}^{\prime}
\end{array} \text { then } \quad v_{1}^{\prime}=v_{2}^{\prime}\right.\right.
$$

Extending the language

One can extend the studied language in order to
Increase its expressiveness Adding sums, products. A general case for primitive operations of real languages (arithmetic operations, comparisons, hashing...)

Have a better typing of some idioms
e_{1} finally $e_{2} \hookrightarrow$ bind $x=\left(e_{1}\right.$ handle $y \succ e_{2}$; raise $\left.y\right)$ in $e_{2} ; x$
e_{1} handle $x \succ e_{2}$ reraise $\hookrightarrow e_{1}$ handle $x \succ\left(e_{2} ;\right.$ raise $\left.x\right)$

Our approach allows to deal with such extensions in a simple way: one just needs to extend the subject reduction proof with the new reduction rules.

Extending the language

Primitive operations

$$
\begin{gathered}
\frac{\Gamma \vdash v_{1}: \mathrm{int}^{\ell} \quad \Gamma \vdash v_{2}: \mathrm{int}^{\ell}}{p c, \Gamma \vdash v_{1}+v_{2}: \text { int }^{\ell}[\partial \mathrm{Abs}]} \quad \frac{\Gamma \vdash v_{1}: t \quad \Gamma \vdash v_{2}: t \quad t \leftharpoonup \ell}{p c, \Gamma \vdash v_{1}=v_{2}: \mathrm{bool}^{\ell}[\partial \mathrm{Abs}]} \\
\frac{\Gamma \vdash v: t}{p c, \Gamma \vdash \text { hash } v: \mathrm{int}^{\ell}[\partial \mathrm{Abs}]}
\end{gathered}
$$

A new form of constraints $t \longleftarrow \ell$
$t \longleftarrow \ell$ constrains all information levels in t and its sub-terms to be less than (or equal to) ℓ.

Extending the language
 Products

$$
t::=\ldots \mid t_{1} \times t_{2}
$$

Products carry no security annotations because, in the absence of a physical equality operator, all of the information carried by a tuple is in fact carried by its components:

$$
\begin{array}{ll}
\ell \triangleleft t_{1} \times t_{2} & \Leftrightarrow \quad \ell \triangleleft t_{1} \wedge \ell \triangleleft t_{2} \\
t_{1} \times t_{2} \triangleleft \ell & \Leftrightarrow t_{1} \triangleleft \ell \wedge t_{2} \triangleleft \ell
\end{array}
$$

Towards an extension of the Caml compiler

The studied language allows us to consider the whole Caml language (excepted the threads library).

We are currently implementing a prototype. It will require to solve several problems due to the use of a type system with subtyping:

- Efficiency of the inference algorithm
- Readability of the inferred types
- Clarity of error messages

Towards an extension of the Caml compiler Type inference

An inference algorithm is divided into two distinct parts.
A set of inference rules lt may be derivated from typing rules in a quasi-systematic way.

$\frac{$| REF |
| :--- |
| $\Gamma \vdash v: t \quad p c \triangleleft t$ |
| $p c, \Gamma \vdash \operatorname{ref} v: t \operatorname{ref}^{\ell}[r]$ |}{$\pi, \Gamma, C \cup\left\{\beta=\alpha \operatorname{ref}^{\lambda}, \pi \triangleleft \alpha\right\} \vdash \operatorname{ref} v: \beta[\rho]$}

A solver Type schemes involve constraint sets. It is necessary to test their satisfiability and to simplify them.

Towards an extension of the Caml compiler Example: lists

```
type ('a, 'b) list = <'b>
    | []
    | (::) of 'a * ('a, 'b) list
let rec length = function
    | [] -> 0
    | _ :: l -> 1 + length l
    \forall[\alpha\leq\beta].* list }\mp@subsup{}{}{\alpha}->\mp@subsup{\textrm{int}}{}{\beta
```


Towards an extension of the Caml compiler

Example: lists (2)

```
let rec iter \(f=\) function
    [] -> ()
    x :: l -> f x; iter f l
        \(\forall[\delta \leq \partial \gamma] \cdot(\alpha \xrightarrow{\gamma} *)^{\gamma} \rightarrow \alpha\) list \(^{\gamma} \xrightarrow{\gamma[\delta]}\) unit
let rec iter2 f = fun
    | [] [] -> ()
    | (x1 :: l1) (x2 :: l2) -> f x1 x2; iter2 f l1 12
    | - -> raise X
    \(\forall[\epsilon \leq \zeta ; \operatorname{Pre} \gamma \leq \zeta ; \delta \leq \partial \gamma]\).
\((\alpha \xrightarrow{\gamma[X: \epsilon ; \delta]} \beta \xrightarrow{\gamma[X: \epsilon ; \delta]} *)^{\gamma} \rightarrow \alpha\) list \(^{\gamma} \rightarrow \beta\) list \(^{\gamma} \xrightarrow{\gamma[X: \zeta ; \delta]}\) unit
```

